Skip to main content

Vertices of simple modules for the symmetric and related finite groups

Objective

This project aims to study representations of symmetric groups, alternating groups and other related finite groups, over non-zero characteristic. These representations are far from being semisimple, and many basic problems, like finding the irreducible representations - that is simple modules - are not solved in general. Therefore one needs to find and understand invariants of modules. We will focus on the distiguished classes of Specht modules and simple modules and will investigate vertices, sources, and complexity. These encapsulate local and group theoretic features on the one hand, and large-scale homological behaviour on the other hand. Spectacular new developments from Lie theory have opened up completely new perspectives, and we will combine the classical approach of G.D. James, the new methods originating in Kac-Moody algebras and quantum groups, and work by Kleshchev , Lascoux/Leclerc/Thibon, Ariki, Grojnowski, and Chuang/Rouquier.

Field of science

  • /natural sciences/mathematics/pure mathematics/algebra

Call for proposal

FP7-PEOPLE-2007-2-1-IEF
See other projects for this call

Funding Scheme

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Address
Wellington Square University Offices
OX1 2JD Oxford
United Kingdom
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 160 658,97
Administrative Contact
Linda Polik (Ms.)