Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

The Balance between Transport and Mechanical Issues in 3D Regenerative Tissues, Using the Perfusion Bioreactor

Objective

Difficulties encountered in tissue engineering invited the use of perfusion bioreactors to deliver essential nutrients to cells within tissue-engineered constructs. Despite the increased nutrient transport achieved, solute perfusion caused harmful mechanical stresses to the cells. Interestingly, some bioreactors are employed to mechanically stimulate cells, improving their biological functions. However, stresses associated with perfusion bioreactors are counterproductive. Currently, to address this issue, perfusion rate is lowered to minimise mechanical implications to the cells. Consequently, nutrient delivery is sacrificed. Therefore, this project aims to balance the nutritional advantage offered by perfusion, and its associate cell-death. By doing so, essential nutrients may be perfused to all regions of tissue-engineered constructs, at flow rates whose mechanical implications are harmless, or even encouraging to cells. To alleviate the costly and iterative experiments necessary to achieve these aims, the use of computational modelling will be central to the project, and incidentally, forms the training objective of the proposal. However, key findings will be corroborated with laboratory experiments. Combining techniques associated with cell biology, material science, and mechanical engineering. The specific objectives of the proposed study are to: Model the fluid flow-induced deformation of cells within tissue-engineered constructs. Using fluorescent staining, corroborate relationship between fluid flow and cellular deformation. Design a system to mechanically deform cells without fluid flow. Investigate the influence of cellular deformation, with and without fluid flow to their viability and biological activities. Extrapolate the individual contributions of fluid flow and mechanical deformation. Determine theoretically, and experimentally, useful ranges of fluid flow and mechanical deformation, conducive to developing functional neo-tissues in vitro.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2007-2-1-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

CHARITE - UNIVERSITAETSMEDIZIN BERLIN
EU contribution
€ 158 694,85
Address
Chariteplatz 1
10117 Berlin
Germany

See on map

Region
Berlin Berlin Berlin
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0