Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-06-16

Analytic and computational relativistic stellar magneto hydro Dynamics

Objective

Relativistic stars are endowed with intense electromagnetic fields. Newly formed relativistic stars before settle into a stationary equilibrium are fast and differentially rotating bodies with a magnetic field which might be amplified either by the differential rotation or the oscillations and possibly the r-mode instability. We will study; using relativistic magnetohydrodynamics (MHD), the linear and non-linear dynamics of strongly magnetized relativistic stars. The outcome of this study will have important implications for the ongoing worldwide efforts to detect, for the first time, gravitational waves while it will provide better understanding for the structure of magnetars and the evolution of their magnetic fields.

Our plan is to develop analytic and numerical tools to study the equilibrium configuration and the evolution of nascent magnetized stars. The analytical methods and the numerical codes will simulate in the linear but also in the full non-linear theory the dynamics of the fluid and the coupled magnetic field. The effort will be among the first, worldwide to fully implement MHD for the investigation of rotating relativistic stars, and we will carry out the first detailed study of different pulsations modes as well as of the timescale of magnetic b raking in differentially rotating proto-neutron stars.

The project will serve to train a young researcher (from Japan) in analytic and approximate work of MHD problems but also to educate him in designing new computational algorithms for studying the dynamics of magnetic fields using modern techniques such shock capturing, parallelization and mesh refinement. The fellow will be educated in theoretical and numerical tools, which are modern and could guarantee a scientific career either in academia or in industry.

Call for proposal

FP6-2004-MOBILITY-7
See other projects for this call

Coordinator

ARISTOTLE UNIVERSITY OF THESSALONIKI
EU contribution
No data
Address
Administration Building, University Campus
THESSALONIKI
Greece

See on map

Links
Total cost
No data