Objectif
In this project I intend to substantially advance research in different fields in contemporary symplectic geometry. The project is articulated in five sections: A. Singular symplectic and Poisson reduction of cotangent bundles. I will focus in an unfinished topic in the theory of singular reduction: its application to cotangent bundles. I will study the fibered structure of the singular reduced spaces in the Poisson and symplectic cases. B. Singular reduction in generalized complex geometry. In the last two years we have seen a dramatic impulse of the theory of Hamiltonian actions and its reduction theory in generalized complex geometry. I will study the problem of the singular reduction of this geometry. This is a relevant problem that has remained untouched and which is expected to attract strong international scientific efforts in a near future. C. Reduction and groupoids. There is an increasing interest in the reduction theory of Hamiltonian groupoid actions and its relationship with Poisson geometry. I will study these topics in both the regular and singular settings. D. Local geometry of Hamiltonian actions. I will produce a normal form adapted to cotangent-lifted Hamiltonian actions analogous to the Marle-Guillemin-Sternberg normal form for arbitrary symplectic manifolds. This will reflect the original fibered geometry of the cotangent bundle and it will be applied to the study of the local properties of the spaces obtained in A., as well as to the investigation of the local dynamics of symmetric Hamiltonian systems (see E.). Also, I will investigate the existence of such normal forms in Poisson and generalized complex geometries. E. Bifurcations of relative equilibria in Hamiltonian systems. I will apply the results of D. to the qualitative study of the dynamics of Hamiltonian systems of mechanical type. Specifically, it is to be expected that the fibered geometry of the normal form obtained in D. will be crucial to the study of their bifurcations.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles mathématiques mathématiques pures topologie topologie symplectique
- sciences naturelles mathématiques mathématiques pures géométrie
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
FP7-PEOPLE-2007-2-1-IEF
Voir d’autres projets de cet appel
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Coordinateur
M13 9PL Manchester
Royaume-Uni
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.