Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Magnetic mechanisms at the nanoscale studied by themal probe: nanocaloriometry and heat released

Objective

The continuous reduction of particle size in materials science has opened up new possibilities of producing materials at small length scales. The potential applications derived from the new properties of these materials span along multiple disciplines. In particular, magnetism at the nanoscale is the basis for new spintronic physics and devices. Whereas the production of nanoparticles, nanoclusters or multilayers of magnetic materials is widely spread, the understanding of phase transitions, specifically magnetic interactions (exchange bias, exchange spring) or magnetization reversal at the nanoscale remain a scientific challenge. In this project we propose to study nanomagnetic materials through their thermal properties or signatures in order to extract specific properties which cannot be deduced from regular magnetic characterization (magnetization, susceptibility measurement) more commonly encountered in the magnetism community. Calorimetry is an important tool to obtain information about magnetic phase transitions in bulk materials. Recently, highly sensitive sensors have been developed allowing measurements with a high resolution on ng samples. The development of suitable thermal sensor relies on a common principle, the use of a suspended membrane to isolate the core of the device from the heat sink. At low temperatures the calorimetric method giving the best results in terms of sensitivity is ac calorimetry. The group of Bourgeois has recently reach unprecedented sensitivities in the attojoule range. In the present project we will take benefit of this achievement to study the thermodynamic signatures in magnetic nanoparticles and in bilayer coupled films through magnetic exchange. The present approach will provide new insights in the understanding of the appearance of phase transitions at the nanometer scale (not yet understood) or in the magnetization reversal mechanism in exchange bias bilayer: the two major goals of our project.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2007-2-1-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
EU contribution
€ 162 509,69
Address
RUE MICHEL ANGE 3
75794 PARIS
France

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0