Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Nonautonomous Bifurcation Theory

Objective

The mathematical concept of a dynamical system is founded on the fact that motions of many application processes are subjected to certain rules. Simple movements of a pendulum, complicated physical phenomena, chemical reactions, biological interactions (e.g. in predator-prey models) or even sociological patterns can be described via dynamical systems. Both the direct applicability of dynamical systems in numerous situations of the real life and the creation of the chaos theory in the 1960s have provided a great impetus to the theory of dynamical systems in the last decades and were a main reason for its success and popularity. For modeling real world phenomena, however, it is often inevitable to assume that the underlying rules are time-dependent, and the notion of a dynamical system is extended to this situation by the concept of a nonautonomous dynamical system. Nonautonomous situations arise quite frequently in the applied sciences, for instance, in studies of pollution spreading processes in coastal environments and climate modeling. In general, dynamical systems depend on parameters which reflect conditions influencing the system. In the dynamical bifurcation theory, the qualitative behaviour of the system under variation of these parameters is discussed. Although, the bifurcation theory for autonomous dynamical systems is a major object of research in the study of dynamical systems since decades, a corresponding theory for nonautonomous systems is still in its infancy, but in the last ten years, many renowned scientists started to think about nonautonomous bifurcation problems. The research and training project at hand aims at making major progress in the development of the nonautonomous bifurcation theory. In particular, further bifurcation patterns for low-dimensional systems are to be found, and moreover, high-dimensional systems shall be examined via reduction principles.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2007-2-1-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
EU contribution
€ 160 658,97
Address
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ London
United Kingdom

See on map

Region
London Inner London — West Westminster
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0