Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-16

Applications of the Schur Transform to Quantum Information Theory

Objective

Quantum computation and quantum information offer qualitatively new capabilities; such as provably secure communication and efficient solutions to computational problems previously believed intractable. However, realizing these possibilities will require techniques for dealing with quantum noise that are efficient in their use of both computational and communication resources. Many information-theoretic solutions achieve the optimal rates of communication but are impossible to apply because they require exponentially large quantum computing resources. One promising new approach to efficiently manipulating quantum information is the Schur transform [1], an algorithm which, similarly to the quantum Fourier transform, allows a quantum computer to efficiently address non-local degrees of freedom in quantum registers.

We propose to use the Schur transform to develop practical quantum circuits for a wide range of tasks in quantum information theory, such as remote state preparation, coding for known or unknown quantum channels, mixed state data compression, optimal state estimation and hypothesis testing. In many cases, such as remote state preparation and channel coding, the information-theoretically optimal solutions are known, but we will use the Schur transform to develop novel efficient algorithms to implement them. In others, such as coding for unknown quantum channels, there are not even any computationally inefficient solutions that are currently known, and we hope to use the insights from the Schur transform to solve these problems for the first time. [1] D. Bacon, I. Chuang and A. Harrow, "Efficient Quantum Circuits for Schur and Clebsch-Gordan Transforms"; arxiv.org eprint quant-ph/0407082 (2004).

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2004-MOBILITY-7
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

IIF - Marie Curie actions-Incoming International Fellowships

Coordinator

UNIVERSITY OF BRISTOL
EU contribution
No data
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0