Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-16

Solutions to the Witten-Dijkgraaf-Verlinde-Verlinde equations of associativity and their applications

Objective

The main subject of the proposed research is the theory of Frobenius manifolds, which unifies different areas of mathematics such as the theory of singularities, quantum cohomologies of algebraic varieties, and Hurwitz spaces. From the point of view of physics, some Frobenius structures describe the moduli space of topological conformal field theories. They also appear in other areas of active current research - from random matrices to interface dynamics.

The first goal of this project is to construct, starting with an arbitrary Frobenius manifold, an associated Frobenius manifold whose dimension is twice as large as the dimension of the given manifold. Such a construction was found in the previous work of the applicant for Frobenius structures on Hurwitz spaces (spaces of meromorphic functions on a Riemann surface). A generalization of the construction to an arbitrary Frobenius manifold would be of great interest due appearance of Frobenius structures in aforementioned topics. The second goal is to find new Frobenius structures on Hurwitz spaces which in the simplest case correspond to Hitchin's two-parametric solution to the Painlev\'e-6 equation.

This problem has already been partially addressed in the work of the applicant: new Frobenius structures related to a one-parameter subfamily of Hitchin's solutions were found. However, the problem of introducing two parameters into the simplest Hurwitz Frobenius structures remains an intriguing open question. Finally, we plan to investigate the meaning of new Frobenius structures from the point of view of applications. In particular, we shall explore a recently established relationship between Frobenius structures on Hurwitz spaces and random matrix theory. We plan to use the obtained Frobenius structures to find new random matrix models.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2004-MOBILITY-7
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

IIF - Marie Curie actions-Incoming International Fellowships

Coordinator

MAX-PLANK INSTITUTE FOR MATHEMATICS, BONN
EU contribution
No data
Address


Germany

See on map

Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0