Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Random Walks on Groups and Representation Theory

Objective

"Locally compact groups have many unitary representations. For example, the regular representation, or more generally, the quasi-regular representations arising as function spaces over group actions. These representations can be written as direct integrals of irreducible ones. The space of all irreducible unitary representations is the ""unitary dual"" of the group. It exists, and has a Borel structure and a funny topology that can be described abstractly, but the truth is, that for a general group, this space is a complete mystery. In fact, we don't know even a single non-trivial representation! The main objective of the proposed research is to study the unitary dual of a locally compact groups. We intend to do this by breaking it up into pieces, and study those pieces and the mutual relations between them. The ""pieces"" that we propose to study are ""Generalized Principal Series"" associated with Poisson Boundaries which stem from Random Walks on the group. The theory of Random Walks provides us spaces endowed with very strong ergodic properties - the Poisson boundaries of the random walks, and their factors. We conjecture that the associated quasi-regular representations are irreducible. One can use these spaces to construct not just one representation, but a series of such. These series could be called ""generalized principal series"", as they form a generalization of the principal series arise in the representation theory of semi-simple groups. We propose certain character formula that, we believe, serves as an invariant associating the random walk with the corresponding representations. Aiming towards our goal, we propose various intermediate conjectures that could be studied independently, along with related subprojects concerning the study of the asymptotics of random walks, the ergodic properties of the boundary actions, the structure of the lattice of factors of the Poisson Boundary, and related topics"

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2007-4-3-IRG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IRG - International Re-integration Grants (IRG)

Coordinator

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
EU contribution
€ 100 000,00
Address
SENATE BUILDING TECHNION CITY
32000 Haifa
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0