Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Harnessing attosecond nonlinear optics for controlling and enhancing high harmonic generation and producing useful coherent x-rays on a tabletop

Objective

Attosecond nonlinear optics will be harnessed for increasing the efficiency and tunability of laser-driven x-rays through high harmonics generation. The process of high harmonic generation, which converts visible laser light into laser-like x-rays, facilitates new directions in science and technology. Examples include the production of attosecond pulses of light that allows direct investigation of the motions of electrons in atoms, molecules, and materials as well as the compact generation of x-rays for nano and bio imaging. However, for most applications, the generation of usable flux is, to date, limited to relatively long wavelengths (>10 nm) in which the upconversion process is rather benign and can be fully phase matched. At the foundation of this proposal are all-optical quasi-phase matching techniques, recently pioneered by the author during his post-doc in USA, which allows the holographic creation of nonlinear structures in the high harmonic generation process. Similarly to photonic structures for visible light, the optically induced nonlinear structures can be used for manipulating and enhancing the generated x-rays. New quasi-phase matching techniques will be developed and implemented for generating harmonics at 10-1 nm with high flux. Periodic structure with periodicity that varies according to the phase matching conditions of a given harmonic order will be used for generating coherent quasi-monochromatic x-rays while stochastic structures will be exploited for generating wideband x-rays. Longitudinally chirped periodic structures will be used for generating sub 100 attosecond pulses while transversely parabolic periodic structures will be exploited for focusing the generated beam at a required distance from the nonlinear medium. The proposed research will have important impact on the generation of compact and bright coherent x-rays for applications in materials and chemical dynamics, nanotechnology, microscopy, biology, and medicine.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2007-4-3-IRG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IRG - International Re-integration Grants (IRG)

Coordinator

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
EU contribution
€ 100 000,00
Address
SENATE BUILDING TECHNION CITY
32000 Haifa
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0