Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Inorganic nanotubes and fullerene-like materials: new synthetic strategies lead to new materials

Objectif

Inorganic nanotubes (INT) and particularly inorganic fullerene-like materials (IF) from 2-D layered compounds, which were discovered in the PI laboratory 16 years ago, are now in commercial use as solid lubricants (www.apnano.com) with prospects for numerous applications, also as part of nanocomposites, optical coatings, etc. The present research proposal capitalizes on the leadership role of the PI and recent developments in his laboratory, much of them not yet published. New synthetic approaches will be developed, in particular using the WS2 nanotubes as a template for the growth of new nanotubes. This include, for example PbI2@WS2 or WS2@NbSe2 core-shell nanotubes, which could not be hitherto synthesized. Other physical synthetic approaches like ablation with solar-light, or pulsed laser ablation will be used as well. Nanooctahedra of MoS2 (NbS2), which are probably the smallest IF (hollow cage) structures, will be synthesized, isolated and studied. Extensive ab-initio calculations will be used to predict the structure and properties of the new INT and IF nanoparticles. Cs-corrected transmission electron microscopy will be used to characterize the nanoparticles. In particular, atomic resolution bright field electron tomography will be developed during this study and applied to the characterization of the INT and IF nanoparticles. The optical, electrical and mechanical properties of the newly sythesized INT and IF materials will be investigated in great detail. Devices based on individual nanotubes will be (nano)fabricated and studied for variety of applications, including mechanical and gas sensors, radiation detectors, etc. Low temperature measurements of the transport properties of individual INT and IF will be performed.

Appel à propositions

ERC-2008-AdG
Voir d’autres projets de cet appel

Régime de financement

ERC-AG - ERC Advanced Grant

Institution d’accueil

WEIZMANN INSTITUTE OF SCIENCE
Contribution de l’UE
€ 838 238,00
Adresse
HERZL STREET 234
7610001 Rehovot
Israël

Voir sur la carte

Type d’activité
Higher or Secondary Education Establishments
Contact administratif
Gabi Bernstein (Ms.)
Chercheur principal
Reshef Tenne (Prof.)
Liens
Coût total
Aucune donnée

Bénéficiaires (3)