Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Robust Robot Locomotion and Movements Through Morphology and Morphosis

Project description


Embodied Intelligence

Locomorph's goal is to push beyond the state of the art in robotic locomotion and movements, by increasing efficiency, robustness, and thus usability in unknown environments. As robotic research and industry are competing to increase robots' usability towards the highly-in-demand service robotics, advancements in robotic locomotion today would give Europe a significant competitive advantage. Locomorph combines multidisciplinary approaches from biology, biomechanics, neuroscience, robotics, and embodied intelligence to investigate locomotion and movements in animals and robots, focusing on two concepts: morphology and morphosis. We will build many diverse robots using heterogeneous modules to explore various morphological factors (shape, materials, sensors, compliance, etc) and sensory-motor control strategies, in order to generate novel and optimal robotic designs which exploit the physical dynamics emerging from the interaction among the physical morphology, control, and environment. The second concept, morphosis (changing of morphology), extends this concept further. Voluntary morphosis is a valuable skill for robots, as it can increase their adaptivity to current tasks/environments. We will adopt two complementary approaches. We will conduct animal/human experiments to study biological strategies in dealing with voluntary/involuntary morphosis. We will extract insights from the results to develop strategies for effective robotic morphosis and motor control solutions for dealing with morphosis. This, combined with the robot's modularity, will create highly robust robots, able to deal with body changes e.g. limb loss. Through an exploration of morphology and morphosis, we aim to develop robots with increased maneuverability, self-stabilization, energy efficiency, and adaptivity to unknown environments. These advances will bring us closer to service robotics, as a large part of these robots must able to locomote safely, regardless of surfaces, layouts, or terrains.

Call for proposal

FP7-ICT-2007-3
See other projects for this call

Coordinator

UNIVERSITAT ZURICH
EU contribution
€ 599 131,00
Address
RAMISTRASSE 71
8006 Zurich
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Helmut Hauser (Dr.)
Links
Total cost
No data

Participants (6)