European Commission logo
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

Oxygen Activation in Ribonucleotide Reductase and Multicopper Oxidases Proteins

Objective

Boundaries among biological, chemical and physical domains are nowadays fading, and the complex phenomena observed in Nature as well as in artificial systems can only be tackled from a broader/interdisciplinary perspective. In this context, the biological activation of the molecular oxygen is a fascinating and yet complex process. The ability to store, transport and utilize this simple molecule gated evolution of life in our planet and led to growth and selection of a variety of organisms. Complex molecules selected by Nature as active in “key metabolic paths” of the oxygen in life often contain copper and/or iron metal ions as reactive centres. A wide variety of experimental results and theoretical investigations show that the metallo-oxygen interactions have dominant states that are not spatially homogeneous (anisotropy). These effects occur when a number of physical interactions such as spin, charge, lattice (crystal-field), and/or orbitals are simultaneously active. The result of these interlocked numbers of factors links biology to chemistry and molecular physic, and allow the oxygen to be used in different ways within metabolism. The research proposal presented herein aims to investigate the red/ox mechanism and the connected energetic of the oxygen activation process in a series of di-iron (Ribonucleotide Reductase, RNR, Class I R2) and copper protein (multicopper oxidases) through the use of spectroscopic methods (EPR X-Q, high field EPR, CD, MCD, rR resonance Raman), structural (X-ray) and kinetic analyses (stopped flow, cryoenzymology). The endeavour is directed towards a better understanding of the geometric and electronic structure of metal-oxygen interactions that contribute to define O2 reactivity. These studies will provide molecular level insight into oxygen and metal metabolism, disease states, bioremediation and possible the development of efficient drugs inhibitor.

Call for proposal

FP7-PEOPLE-IEF-2008
See other projects for this call

Coordinator

UNIVERSITETET I OSLO
EU contribution
€ 202 542,89
Address
PROBLEMVEIEN 5-7
0313 Oslo
Norway

See on map

Region
Norge Oslo og Viken Oslo
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Kate Bronndal (Ms.)
Links
Total cost
No data