Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Synthetic Superantibodies – Bioinspired Engineering of Artificial Receptor Structures

Objective

The project “Superantibodies” encompasses an interdisciplinary approach to accomplish the first instance of a biohybrid, yet fully synthetic three dimensional recognition element by converging the benefits of natural biorecognition with those of a synthetic approach. The bio-inspired concept is modelled on the antibody binding site whose binding capacity is the result of a defined three-dimensional structure in which loops of polypeptides cooperatively interact with the antigen through specific biomolecular interactions. The project implements a combination of modern biomolecular and bioanalytical techniques to identify peptides within these structures that are pivotal for the interaction with the antigen, and to use organic chemistry to synthetically mimic these peptides whilst maintaining their biological function. Affinity driven self-assembly between these peptides and their specific antigen is used to produce templates for a subsequent molecular imprinting process, resulting in a site-specific integration of peptides into the structural backbone of a molecularly imprinted polymer. It is hypothesised that it will be possible to rationally engineer recognition elements with tailored affinities by changing the number and the type of the embedded peptides to rationally create structures whose affinity can outperform that of naturally derived antibodies. This proposal is built on the expertises and scientific strengths of Dr Heiko Andresen while taking him in new directions. The multidisciplinary group of Dr Molly Stevens provides a fertile environment for the scientific and professional development of the applicant, and Imperial’s infrastructures and dedication to high-quality professional and personal career development strongly support Dr Andresen in reaching a position of professional maturity. The project proposal is in line with aims and policy objectives of the FP7, with particular high relevance for the theme-crossing FP7 initiative ‘NanoMedicine’.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-IEF-2008
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
EU contribution
€ 171 300,62
Address
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ London
United Kingdom

See on map

Region
London Inner London — West Westminster
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0