Skip to main content
European Commission logo print header

Application of in situ techniques to real environmental catalytic processes


In the 21st century, heterogeneous catalysis research should focus on achieving 100% selectivity for the desired product in all catalyst-based processes. However, this can only be achieved by understanding the fundamental steps of the reaction mechanisms, which allow better design of a catalyst with optimized performance with respect to selectivity and activity. With the development of surface science in the early 70s fundamental studies led to discovery, development and enhanced understanding of several catalyst systems. Many of the early surface science techniques along with the newly develop techniques continue to and will play a very important role in the future development of next generation catalysts and catalytic processes for the industrial use and environmental protection. This project will incorporate new techniques in the catalysis field to obtain valuable surface science information for the improvement of catalysis applied for environmental problems. This will be performed by the investigations of two different hydrogenation environmental reactions, (hydrodechlorination of trichloroethylene in gas phase using Pt,Pd-ternary hydrotalcites and the reduction of nitrates in water streams for drinking water using Pt/CeO2 catalysts), using in situ SFG (Laser spectroscopy by sum frequency generation) and Transmission and ATR (attenuated total reflection) Fourier transform infrared techniques. A better understanding of the reaction mechanism will allow the design of catalysts with optimized performance. The main novelty of the project consists in the application of SFG techniques, used till now for single crystals or model systems, to real catalytic processes. In liquid phase systems, SFG will allow us to specify the species at the surface without contributions from the liquid phase. By using these techniques for monitoring of catalytic reactions, a new field opens up, which can be extended to other types of reactions.

Call for proposal

See other projects for this call



Karlsplatz 13
1040 Wien

See on map

Ostösterreich Wien Wien
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Günther Rupprechter (Prof.)
EU contribution
No data