Objective
Viral hemorrhagic fever is a serious health threat mostly caused by the Dengue Virus (DV), which infects 50 to 100 million people worldwide yearly. Aedes spp. mosquitoes, the disease vectors endemic to tropical and subtropical regions, are spreading to temperate regions. A. aegypti, the main vector, is now found in Madeira, Portugal, and A. albopictus, a less frequent albeit potential vector, is present in several European countries. Conditions for a possible dengue outbreak in Europe are now set, only being necessary the mosquitoes to enter in contact with human viral carriers, as recently occurred in the A. albopictus promoted Chikungunya fever 2007 outbreak in Italy. DV infection is therefore a potential clinical problem for Europe, as stated in the EU FP7 Emerging Epidemics program (http://ec.europa.eu/research/health/(opens in new window)). Once infected, no specific treatment is available, partially due to the lack of detailed information on the molecular mechanisms of viral assembly. The project intends to fill that gap by studying the viral assembly capsid protein, in biologically relevant conditions, using lipid bilayers mimicking biological membranes and intracellular lipid droplets isolated from hepatic cell lines. The project gathers the complementary expertise of two teams, each having a distinct yet synergistic role. Prof. Da Poian, from the Medical Biochemistry Institute, Federal University of Rio de Janeiro, Brazil, has expertise in cell and molecular biology, NMR and calorimetry studies applied to DV proteins. Prof. Santos, from the Institute of Molecular Medicine, Lisbon, Portugal, is skilled in light scattering spectroscopy and atomic force microscopy applied to lipid bilayers interaction with viral proteins. Thus the project assembles an eclectic gathering of complementary expertise to study the role of lipid membranes in dengue viral assembly. Following this approach, it is expected to open a gateway to the future development of capsid assembly-targeted therapies.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- medical and health scienceshealth sciencesinfectious diseasesRNA viruses
- natural sciencesbiological sciencesmicrobiologyvirology
- natural sciencesphysical sciencesopticsmicroscopy
- natural sciencesbiological sciencesbiochemistrybiomoleculeslipids
- natural sciencesbiological scienceszoologyinvertebrate zoology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Call for proposal
FP7-PEOPLE-IOF-2008
See other projects for this call
Funding Scheme
MC-IOF - International Outgoing Fellowships (IOF)Coordinator
1649 028 Lisboa
Portugal