Objective The constant improvement of microelectronic devices is based on their miniaturization from the micrometer to the nanometre scale. This continuous scaling down calls for new materials and new device concepts. At the nano-scale, the thermo-physical properties of the materials have a fundamental impact on the electronic behaviour of the device. Despite this, a non- destructive experimental technique capable of determining the thermophysical properties of the key materials in a real microelectronic device is still lacking. The goal of this project is to develop a technique, based on the infrared radiation measurement, capable of addressing the device nano-scale. To achieve this objective the experimental technique must be combined with the heat transfer modelling in the device under investigation.The project will focus on specific microelectronic devices such as ultra-scaled metal-oxide-semiconductor field-effect transistors (MOSFETs) as well as novel non-volatile memories (NVM) based on phase-change materials (PC M). In the latter case the determination of the thermal properties of the active material (calchogenides) and of the heater (TiN) is very important for the device functional characterization. An additional objective of the project is also to use the developed technique to address the thermo-physical properties of thin films, such as oxides with high and low dielectric constant, which today are considered as substitutes of silicon oxide both in the front as well as in the back end of near future CMOS technology.This study will be carried out in collaboration with an important European industrial partner, STMicroelectronics. This work will therefore contribute to a relevant technological evolution in the field of microelectronics with consequent economical repercussions. Fields of science natural scienceschemical sciencesinorganic chemistrypost-transition metalsengineering and technologymaterials engineeringcoating and filmsnatural sciencesphysical scienceselectromagnetism and electronicssemiconductivitynatural sciencesphysical scienceselectromagnetism and electronicsmicroelectronicsnatural scienceschemical sciencesinorganic chemistrymetalloids Keywords Infrared radiation Inverse methods Nano Nano-scale Thermophysical properties Thermoreflectance scale Programme(s) FP6-MOBILITY - Human resources and Mobility in the specific programme for research, technological development and demonstration "Structuring the European Research Area" under the Sixth Framework Programme 2002-2006 Topic(s) MOBILITY-2.1 - Marie Curie Intra-European Fellowships (EIF) Call for proposal FP6-2004-MOBILITY-5 See other projects for this call Funding Scheme EIF - Marie Curie actions-Intra-European Fellowships Coordinator CONSIGLIO NAZIONALE DELLE RICERCHE Address Piazzale aldo moro 7 Roma Italy See on map Links Website Opens in new window EU contribution No data