Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Identification of the dynamic mechanisms regulating the targeting and clustering of sodium and potassium channels in neurons

Objective

The electrical excitability is a fundamental property of neurons. Diversity in intrinsic neuronal excitability is generated by the variable expression, subcellular localization, and function of a complex repertoire of ion channels. Dynamic regulation of intrinsic excitability can further alter the behavior of neurons and confer plasticity to neuronal signaling. Aberrant expression, localization, and function of ion channels can result in channel-based pathophysiologies. One of the challenging questions is to understand how neurons regulate the expression and localization of ion channels. The Axon Inital Segment (AIS) and the nodes of Ranvier are key sub-compartments that generate and conduct the action potentials along the axon. The voltage-dependent sodium (Nav) and potassium (Kv) channels are critically concentrated at the AIS and nodes of Ranvier to ensure proper axon potential propagation. Despite the central role of these channels in excitability, the molecular and cellular determinants governing their appropriate targeting and membrane organization are just beginning to emerge. An intricate assembly of adhesion molecules and cytoskeletal scaffold proteins hold Nav and Kv channels in place. However, how such a complex is dynamically regulated is still largely unknown. We recently identified two new processes based on phosphorylation of Nav and Kv complexes by two kinases, casein kinase 2 (CK2) and cyclin-dependant kinase (Cdks). The phosphorylation/dephosphorylation modifications of these channels modify indeed their localization at the AIS. Here, I propose to analyze, using a multidisciplinary approach, the respective role of CK2 and Cdks signaling pathways on dynamic targeting/assembly of Nav1 and Kv1 channels at the AIS and in the node of Ranvier. The end-results of this proposal should provide new insights into the mechanisms involved in the dynamic regulation of excitability and opens new paths to better understand defects leading to neuronal dysfunction.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-IRG-2008
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IRG - International Re-integration Grants (IRG)

Coordinator

UNIVERSITE D'AIX MARSEILLE
EU contribution
€ 100 000,00
Address
BOULEVARD CHARLES LIVON 58 LE PHARO
13284 Marseille
France

See on map

Region
Provence-Alpes-Côte d’Azur Provence-Alpes-Côte d’Azur Bouches-du-Rhône
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0