Objective
The aim of the ALIGN project is to understand, predict, and optimize the photovoltaic energy conversion in third-generation solar cells, starting from an atomic-scale quantum-mechanical modelling of the photovoltaic interface. The quest for photovoltaic materials suitable for low-cost synthesis, large-area production, and functional architecture has driven substantial research efforts towards third-generation photovoltaic devices such as plastic solar cells, organic-inorganic cells, and photo-electrochemical cells. The physical and chemical processes involved in the harvesting of sunlight, the transport of electrical charge, and the build-up of the photo-voltage in these devices are fundamentally different from those encountered in traditional semiconductor heterojunction solar cells. A detailed atomic-scale quantum-mechanical description of such processes will lay down the basis for a rational approach to the modelling, optimization, and design of new photovoltaic materials. The short name of the proposal hints at one of the key materials parameters in the area of photovoltaic interfaces: the alignment of the quantum energy levels between the light-absorbing material and the electron acceptor. The level alignment drives the separation of the electron-hole pairs formed upon absorption of sunlight, and determines the open circuit voltage of the solar cell. The energy level alignment not only represents a key parameter for the design of photovoltaic devices, but also constitutes one of the grand challenges of modern computational materials science. Within this project we will develop and apply new ground-breaking computational methods to understand, predict, and optimize the energy level alignment and other design parameters of third-generation photovoltaic devices.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences computational science
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- engineering and technology environmental engineering energy and fuels energy conversion
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2009-StG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
OX1 2JD Oxford
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.