Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Structural and electronic properties of nanoscale metallic contacts fabricated by thermally assisted electromigration

Objective

The key aim of the project is to correlate the electronic transport properties of nanoscale metallic contacts with their structure. The electronic transport properties through a metallic contact of atomic dimensions are governed by the atomic structure and by the chemical properties of the contact as well as by the wave nature of electrons. This leads to plateaus of the conductance measured as a function of contact size that do not necessarily correspond to integer multiples of the conductance quantum. I will investigate whether and how atomic as well as electronic shell effects influence the atomic structure of nanoscale metallic contacts. We will measure both electronic transport properties and structural properties concurrently and determine their mutual relation on each individual contact. The contacts will be fabricated by Joule heating a nanowire until thermally assisted electromigration sets in and thins the nanowire to form a contact. The structural properties of these nanocontacts will be studied using scanning force microscopy and scanning tunneling microscopy with atomic resolution in ultrahigh-vacuum. This approach will allow us to use clean superconducting contacts and to exploit superconductivity in order to study the electronic transport properties of the contacts. The electronic transport properties will be studied employing multiple Andreev reflections to determine the number and transmission coefficient of electronic conduction channels. Eventually, a deeper understanding of the relation between structure and electronic transport properties will be obtained which is a prerequisite to tailor the electronic transport properties of nanoscale metallic contacts.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2009-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

KARLSRUHER INSTITUT FUER TECHNOLOGIE
EU contribution
€ 1 513 000,00
Address
KAISERSTRASSE 12
76131 Karlsruhe
Germany

See on map

Region
Baden-Württemberg Karlsruhe Karlsruhe, Stadtkreis
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0