Skip to main content

Nanoengineered Chemical Synthesis Inside Restricted Volume of Nano- and Microsized Polyelectrolyte Capsules


The idea of the proposed project is to employ hollow polyelectrolyte capsules as spatially-confined microreactors for synthesis of composite inorganic nanomaterials. Recently introduced, these capsules are made by layer-by-layer adsorption of oppositely charged polyelectrolytes on the surface of template nanoparticles with sequential removal of the template core. Polyelectrolyte capsules can act as excellent microreactors for carrying out physico-chemical processes (nanoparticle precipitation, biomineralization, biomimetic synthesis, photocatalytic synthesis, etc.) in their spatially restricted volume. The possibility of varying shell components and capsule size gives a considerable diversity in synthetic approaches and initial reagents while selective and controllable permeability of the capsule wall, which is a key factor for performing chemical reactions exclusively inside the capsule volume, allows to control diffusion of the reagents and reaction kinetics. The main project objectives are:
1) to understand mechanism of physico-chemical reactions in restricted capsule volume and to figure out parameters of crucial influence (shell, volume composition; capsule size; etc.) on the reaction kinetics and properties of resulting nanomaterials;
2) to fabricate new composite nanomaterials and to study their properties in comparison with properties of analogous nanomaterials obtained in bulky water solution;
3) to realize enzyme-containing polyelectrolyte capsules as semipermeable enzyme-driven nanoreactors for biomimetic synthesis of inorganic materials.

Proposed project is a multidisciplinary one and its results can be of interest for scientists from material science, biotechnology, nanotechnology, life science, catalysis, medicine, and environmental chemistry. The proposed project contributes to the "Nano-technologies and nano-sciences, knowledge-based multifunctional materials, new production processes and devices" thematic priority of 6th European Programme.

Call for proposal

See other projects for this call

Funding Scheme

IIF - Marie Curie actions-Incoming International Fellowships


Hofgartenstrasse 8