Skip to main content

Approximations to dynamic density functional theory - phase field simulations on atomic scales

Objective

A recent innovation in materials modeling has been the phase field crystal model. Instead of a phenomenological phase field variable the quantity of interest is the atomic number density. This formulation has made it possible to incorporate the kinetics of phase transformations with properties of solids that arise due to their periodic structure. This includes elastic strain, topological defects, vacancy diffusion and polycrystalline grain boundary interactions. The appealing feature of the phase field crystal model is its connection with classical density functional theory, which allows material specific simulations on diffusive time scales, orders of magnitude larger than classical molecular dynamics.

Our mission is to foster international cooperation in phase field crystal modeling and serve as a platform for addressing global challenges in materials science by using the phase field crystal approach. Applications of interest are self-assembly of quantum dots in thin film growth and fluid-structure interactions in microfluidics.

We involve participants from diverse sectors, regions and science and engineering disciplines which have already proven to be able to work together efficiently.

Call for proposal

FP7-PEOPLE-2009-IRSES
See other projects for this call

Coordinator

TECHNISCHE UNIVERSITAET DRESDEN
Address
Helmholtzstrasse 10
01069 Dresden
Germany
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 84 600
Administrative Contact
Axel Voigt (Prof.)

Participants (1)

AALTO KORKEAKOULUSAATIO SR
Finland
EU contribution
€ 39 600
Address
Otakaari 1
02150 Espoo
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Tapio Ala-Nissilä (Prof.)