Skip to main content
European Commission logo print header

Cell compartmentalization, individuation and diversity


Asymmetric cell division is a key mechanism for the generation of cell diversity in eukaryotes. During this process, a polarized mother cell divides into non-equivalent daughters. These may differentially inherit fate determinants, irreparable damages or age determinants. Our aim is to decipher the mechanisms governing the individualization of daughters from each other. In the past ten years, our studies identified several lateral diffusion barriers located in the plasma membrane and the endoplasmic reticulum of budding yeast. These barriers all restrict molecular exchanges between the mother cell and its bud, and thereby compartmentalize the cell already long before its division. They play key roles in the asymmetric segregation of various factors. On one side, they help maintain polarized factors into the bud. Thereby, they reinforce cell polarity and sequester daughter-specific fate determinants into the bud. On the other side they prevent aging factors of the mother from entering the bud. Hence, they play key roles in the rejuvenation of the bud, in the aging of the mother, and in the differentiation of mother and daughter from each other. Recently, we accumulated evidence that some of these barriers are subject to regulation, such as to help modulate the longevity of the mother cell in response to environmental signals. Our data also suggest that barriers help the mother cell keep traces of its life history, thereby contributing to its individuation and adaption to the environment. In this project, we will address the following questions: 1 How are these barriers assembled, functioning, and regulated? 2 What type of differentiation processes are they involved in? 3 Are they conserved in other eukaryotes, and what are their functions outside of budding yeast? These studies will shed light into the principles underlying and linking aging, rejuvenation and differentiation.

Call for proposal

See other projects for this call



Raemistrasse 101
8092 Zuerich

See on map

Schweiz/Suisse/Svizzera Zürich Zürich
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Yves Barral (Prof.)
Principal investigator
Yves Barral (Prof.)
EU contribution
No data

Beneficiaries (1)