Objective
Electromagnetic pulses have ubiquitous applications as information carriers, and the continuously increasing demand for larger capacity of information channels, faster data transmission and high resolution real time imaging necessitate novel approaches to pulse generation, transmission and exploitation in functional devices. Artificial electromagnetic materials (metamaterials) have opened new avenues for controling the properties of waves in the engineered media. The periodic and quasi-periodic layered semiconductor structures constitute a novel class of composite materials, which can offer a novel means for the design of innovative microwave and THz applications using pulsed signals. The main objective of this project is to investigate the properties of pulses in active and nonlinear artificial media composed of periodic and quasi-periodic arrangements of semiconductor, ferrite and metal layers. The theory of nonlinear three-wave interaction in pumping regime in a periodic nipi and periodic and quasi-periodic magnetoactive structures will be developed and the resonance phenomena improving second-harmonic generation efficiency will be analysed. The effects of external biasing fields, pumping, layers' parameters and geometry on the properties of pulsed signals in the semiconductor based metamaterials will be investigated in millimetre, THz and optical frequency ranges. The expected outcomes will give insight into the pulse propagation phenomena in the semiconductor based active and nonlinear artificial electromagnetic materials and provide the conceptual basis for the waveform control of the pulsed signals in the physical layer of hardware and the new applications ranging from ultra-wideband (UWB) communications to THz sensors.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- engineering and technologymaterials engineeringcomposites
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- natural sciencesmathematicspure mathematicsgeometry
You need to log in or register to use this function
Call for proposal
FP7-PEOPLE-2009-IIF
See other projects for this call
Funding Scheme
MC-IIF - International Incoming Fellowships (IIF)Coordinator
BT7 1NN Belfast
United Kingdom