Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

Modeling the Evolutionary Properties of Complex Genetic Architectures

Objective

The genetic architecture of morphological, physiological and behavioral characters conditions and constrains the biodiversity of species and their ability to adapt to environmental changes. Gathering and processing qualitative and quantitative information about the genetic mechanisms that underly a trait of interest is thus of tremendous importance in plant and animal breeding, medicine, and evolutionary genetics. However, the complexity of genetic architectures is overwhelming. Recent advances in molecular biology, evo-devo and quantitative genetics have indeed highlighted how intricated were genetic, metabolic and developmental regulation mechanisms in the expression of the gene-to-phenotype relationship. Evolutionary quantitative genetics aims at predicting the evolutionary properties of a population or a species without detailing explicitly the complexity of the genotype-phenotype relationship. To do so, the models that are frequently used do not pretend to provide an exhaustive description of the genetic architecture, but rather to summarize it through some simple parameters, expected to catch key properties of the genotype-phenotype map in a population. The sharp contrast between the complexity of real architectures and the simple picture provided by most quantitative genetics models has often lead to some debate on the relevance of qualitative and quantitative predictions derived from the mathematical simplification of the evolutionary theory. The philosophy of this project is to challenge the capacity for some widely used models to describe and predict the evolutionary potential of populations and species, by contrasting their predictions with empirical data and/or more realistic models. The research objectives detailed thereafter thus focus on the validation and the improvement of the part of the theory of evolution dealing with the complexity of genotype-phenotype maps.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2009-RG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-ERG - European Re-integration Grants (ERG)

Coordinator

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
EU contribution
€ 45 000,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0