Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-25

Quantum Chromodynamics at High Energies and String Theory

Objective

The Balitsky-Fadin-Kuraev-Lipatov (BFKL) formalism allowed giving a theoretical description of scattering amplitudes in the Regge limit of high energies and fixed momentum transfers in the framework of the theory of strong interactions, quantum chromodynamics (QCD).

Deep mathematical properties emerged in this way in the leading logarithmic approximation (LLA) for multi-colour QCD: conformal invariance, holomorphicfactorisation and integrability (Lipatov, 1986-1993). Moreover, in N=4 super-symmetric QCD these properties may hold in the next-to-leading approximation (NLLA) too. In such model, the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations for quasi-partonic operators are integrable in LLA (Lipatov, 1997) and possibly also in NLLA. We think that these remarkable features are related to the fact that N=4 super-symmetric QCD is dual to super-string theory according to the AdS/CFT correspondence.

We shall study in this project the relation between the integrability of evolution equations for high energy processes in gauge field theories and super-string theories paving the way to go beyond the traditional perturbation theory at least for N=4 super-symmetric QCD. The effective action constructed for gauge theories in the Reggelimit (Lipatov, 1995) will be investigated in QCD and in its super-symmetric generalisations to calculate next-to-next-to-leading corrections to the Regge trajectories and their couplings. The Reggeon field theory in QCD, derived in this way, will give a possibility to solve a long-standing problem of the unitarisation of the QCD pomeron. This is important for understanding the physics of quark-gluon matter created in the ultra-relativistic heavy ion collisions performed in BNL and CERN.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2004-MOBILITY-10
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

EXC - Marie Curie actions-Chairs

Coordinator

THE UNIVERSITAT HAMBURG
EU contribution
No data
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0