Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

Large Scale Architectures with Nanometric Structured Interfaces for Charge Separation, Transport and Interception

Objective

This research is aimed at developing new architectures at the molecular, nanometric, and macroscopic scales for the design and study of light induced charge transport using synthetic systems. The strategic objective is to establish a comprehensive approach for constructing nanometric scale hybrid structures that will enable us to tune the required physical, chemical, and electrical properties across scales required for efficient harvesting of light energy in a rigorous manner for enhancing our capabilities and basic understanding of light harvesting processes. We will form nanometric architectures featuring molecular diversity and functionality with nanometric gaps coupled to scaffolds capable of electrical transport. The nanometric architectures will be formed via simple yet powerful methods relying on sophisticated use of nanostructure surface chemistry and material properties while minimizing the application of top-down fabrication methods and will be studied at the single building block level as well as at array level. Meticulous study of the light induced charge separation and transport at the nanometric scale using single nanostructure building blocks as well as the collective dynamics of large scale arrays will be addressed with an emphasis on understanding charge dynamics at interfaces. The research activity will utilize unique nanostructure assembly methods and post-growth manipulation of the chemical composition developed during my research.

Achieving our fundamental goals is expected to lead to new insights and capabilities relating to the harvesting of light energy and converting it to electrical energy and to significantly advance our ability to utilize light energy for photocatalysis.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2010-StG_20091028
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

THE HEBREW UNIVERSITY OF JERUSALEM
EU contribution
€ 1 427 000,00
Address
EDMOND J SAFRA CAMPUS GIVAT RAM
91904 JERUSALEM
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0