Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Deciphering the Evolution of Galaxies and the Assembly of Structure: Probing the Growth of Non-Linear Structure in the Dark Universe with Statistical Analyses of Galaxy Surveys

Objective

I propose to measure the growth of non-linear structure in the dark universe to answer two fundamental questions in cosmology: Is the Cold Dark Matter structure formation theory compatible with the galaxy distribution on group scales? Is the accelerating expansion of the Universe caused by Dark Energy? This frontier research probes two key components of our standard cosmological model. This study is fundamental for understanding structure formation and galaxy evolution, leading to possible ground-breaking changes in our comprehension of gravitational physics.

I will tackle this ambitious research plan by exploiting my extensive knowledge of galaxy survey analyses and propose to critically test our standard model by measuring three key properties: the shape and evolution of the Cold Dark Matter halo mass function; the efficiency of galaxy formation in Local Group sized systems; the evolution of the growth of structure. To achieve those decisive goals, I will build the DEGAS Team, an inter-disciplinary unit dedicated to solve photometric and spectroscopic survey systematics, to develop optimal clustering statistics for imaging surveys and to create a large variety of state-of-the-art mock Universes to interpret the statistical analyses. The techniques developed will be applied to two world-leading galaxy surveys: GAMA, a multi-wavelength redshift survey of which I am a founder and co-PI, and Pan-STARRS PS1, a unique 3/4-sky imaging survey. Using innovative clustering statistics accounting for individual photometric redshift distributions and statistically robust methods for halo mass function estimates, my DEGAS Team will provide the ultimate test for structure formation models, gain key insights on galaxy evolution and present novel constraints on the nature of gravity.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2010-StG_20091028
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

UNIVERSITY OF DURHAM
EU contribution
€ 1 250 222,66
Address
STOCKTON ROAD THE PALATINE CENTRE
DH1 3LE DURHAM
United Kingdom

See on map

Region
North East (England) Tees Valley and Durham Durham CC
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (2)

My booklet 0 0