Skip to main content
European Commission logo print header

Charting the landscape of brain development by large-scale single-cell transcriptomics and phylogenetic lineage reconstruction

Objective

Embryogenesis is the temporal unfolding of cellular processes: proliferation, migration, differentiation, morphogenesis, apoptosis and functional specialization. These processes are well understood in specific tissues, and for specific cell types. Nevertheless, our systematic knowledge of the types of cells present in the developing and adult animal, and about their functional and lineage relationships, is limited. For example, there is no consensus on the number of cell types, and many important stem cells and progenitors remain to be discovered. Similarly, the lineage relationships between specific cell types are often poorly characterized. This is particularly true for the mammalian nervous system. We have developed (1) a reliable high-throghput method for sequencing all transcripts in 96 single cells at a time; and (2) a system for high-throughput phylogenetic lineage reconstruction. We now propose to characterize embryogenesis using a shotgun approach borrowed from genomics. Tissues will be dissected from multiple stages and dissociated to single cells. A total of 10,000 cells will be analyzed by RNA sequencing, revealing their functional cell type, their lineage relationships, and their current state (e.g. cell cycle phase). The novel approach proposed here will bring the powerful strategies pioneered in genomics into the field of developmental biology, including automation, digitization, and the random shotgun method. The data thus obtained will bring clarity to the concept of ‘cell type’; will provide a first catalog of mouse brain cell types with deep functional annotation; will provide markers for every cell type, including stem cells; and will serve as a basis for future comparative work, especially with human embryos.

Call for proposal

ERC-2010-StG_20091118
See other projects for this call

Host institution

KAROLINSKA INSTITUTET
EU contribution
€ 1 496 032,00
Address
Nobels Vag 5
17177 Stockholm
Sweden

See on map

Region
Östra Sverige Stockholm Stockholms län
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Jill Blomstrand (Mrs.)
Principal investigator
Sten Linnarsson (Dr.)
Links
Total cost
No data

Beneficiaries (1)