Skip to main content
European Commission logo print header

Characterization of Wall Temperature Effect during Transition of Hypersonic flow over a Cone By Experiments And Numerical Simulations

Objective

The development of secure and re-usable re-entry vehicle requires the complete control of the heat distribution on its Thermal Protection System (TPS).
During the most critical re-entry phase, the hypersonic flow along the vehicle initiates a laminar boundary layer inside of which most of the transfer phenomena take place (heat, momentum and mass transfer). If at one position of the vehicle, this boundary layer experiences a transition from the laminar to the turbulent regime then at the corresponding position the TPS will receive a sharp increase of the incoming heat flux (minimum 3 times higher). If the vehicle aims to be re-usable, it is mandatory to protect it adequately against this overheat. Therefore Aerospace designer needs to receive the proper information and tools allowing a better prediction and ultimately a better control of the transition in hypersonic regime.
This activity proposes a detailed and careful experimental and numerical data base from six hypersonic facilities and several numerical codes from EU and Russia. The selected configuration will be the one of a sharp cone. The noise level in each facility will be characterised. The probable differences between facility predictions running at seemingly comparable conditions (Mach number, Reynolds number and model dimensions) will be explained.
Various types of numerical simulations including DNS will be carried out to prepare the experimental campaigns. These simulations will be further validated and assess during the activity.
Hypersonic transition will be observed with and without localized control. A deeper understanding of the physics involved in hypersonic transition will be investigated. The challenging solution of the local thermal control of the boundary layer at hypersonic regime will be proposed for future aerospace mission and disseminated in the industrial community.

Call for proposal

FP7-SPACE-2010-1
See other projects for this call

Coordinator

VON KARMAN INSTITUTE FOR FLUID DYNAMICS
EU contribution
€ 119 999,00
Address
Waterloose Steenweg, 72
1640 Sint-Genesius-Rode
Belgium

See on map

Region
Vlaams Gewest Prov. Vlaams-Brabant Arr. Halle-Vilvoorde
Activity type
Research Organisations
Administrative Contact
Patrick Rambaud (Prof.)
Links
Total cost
No data

Participants (4)