Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-06-18

Seamless Integration of Neurons with CMOS Microelectronics

Objective

We propose to seamlessly integrate advanced microelectronics and living neuronal cells in a comprehensive and interdisciplinary approach to significantly advance the understanding of neuronal behaviour. The project includes (a) the development of a novel multifunctional microelectronics chip platform in complementary metal oxide semiconductor (CMOS) technology, which serves to enable (b) key neurobiological and neuromedical research on network dynamics and plasticity of rodent neuronal networks and visual encoding in retinae, and (c) the necessary concurrent development of algorithms and models to efficiently process and maximally harness the unprecedented quality of the obtained data.
Neuronal or retinal preparations, such as acute and organotypic brain slices (retinae) or primary cultured, dissociated cells, will be directly placed or grown atop dedicated CMOS microelectronics chips. The chips will feature multiple functions, since neurons carry and pass signals to each other using electro-chemical mechanisms: electrophysiological recording & stimulation, in closed loop & real time, as well as highly spatially resolved impedance measurements and detection of neuroactive chemical compounds. The chips will be capable of delivering any of these functions to arbitrarily selectable individual cells or even subcellular units, and, at the same time, of interacting with a multitude of cells or complete neuronal networks. Along with imaging (light, fluorescence), pharmacological, and/or genetic methods, the developed chip platform will be used to study neuronal network dynamics, synaptic and axonal plasticity, relevant for many brain diseases, as well as visual encoding in the retina. Efficient data handling and spike sorting algorithms will be developed to facilitate these investigations. The multidimensional data will then be used to establish detailed models of neurons and neuronal networks.

Call for proposal

ERC-2010-AdG_20100224
See other projects for this call

Host institution

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
EU contribution
€ 2 498 000,00
Address
Raemistrasse 101
8092 Zuerich
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Activity type
Higher or Secondary Education Establishments
Principal investigator
Andreas Reinhold Hierlemann (Prof.)
Administrative Contact
Andreas Reinhold Hierlemann (Prof.)
Links
Total cost
No data

Beneficiaries (1)