Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Dynamical processes in open quantum systems: pushing the frontiers of theoretical spectroscopy

Objective

"Scope ""Energy Materials. In this project we develop new concepts for building a novel theoretical framework (the ab-initio non-equilibrium dynamical modelling tool”) for understanding, identifying, and quantifying the different contributions to energy harvesting and storage as well as describing transport mechanisms in natural light harvesting complexes, photovoltaic materials, fluorescent proteins and artificial (nanostructured) devices by means of theories of open quantum systems, non-equilibrium processes and electronic structure. We address cutting-edge applications along three major scientific challenges: i) characterize matter out of equilibrium, ii) control material processes at the electronic level and tailor material properties, iii) master energy and information on the nanoscale. The long-term goal is developing a set of theoretical tools for the quantitative prediction of energy transfer phenomena in real systems.
We will provide answers to the following questions: What are the design principles from the environment-assisted quantum transport in photosynthetic organisms that can be transferred to nanostructured materials such as organic photovoltaic materials and biomimetic materials? What are the fundamental limits of excitonic transport properties such as exciton diffusion lengths and recombination rates? What is the role of quantum coherence in the energy transport in photosynthetic complexes and photovoltaic materials? What is the role of spatial confinement in water and proton transfer through porous membranes (nano-capillarity)?
The ground-breaking nature of the project lies in being the first systematic development and application of the theories of open quantum systems and quantum optimal control within an ab-initio framework (time-dependent-density functional theory). The project will open new methodological, applicative and theoretical horizons of research."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2010-AdG_20100224
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

UNIVERSIDAD DEL PAIS VASCO/ EUSKAL HERRIKO UNIBERTSITATEA
EU contribution
€ 1 877 497,00
Address
BARRIO SARRIENA S N
48940 LEIOA
Spain

See on map

Region
Noreste País Vasco Gipuzkoa
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0