Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-06-18

Surfaces of Energy Functional Metal Oxides

Objective

Many important interactions near the surfaces of energy functional metal oxide surfaces are yet to be established at the atomic level. How bonds are formed and broken in photocatalysis, the role of the metal and oxide in a supported metal catalyst, the mechanism of energy flow from atom to atom after photoexcitation in a photovoltaic device are just some of the open questions. The underlying motivation to generate answers is clear: it provides an opportunity to improve technology associated with light harvesting and energy-related catalysis. But the fundamental science required is extremely challenging and is only just starting to yield some detailed answers. In this highly ambitious project we will tackle three major issues associated with the surface chemistry of energy functional metal oxides-- three grand challenges. In doing so, we will make use of a unique range of experimental techniques. One will focus on solid-gas interactions in studies of Au on CeO2, employing scanning tunneling microscopy (STM), scanning tunnelling spectroscopy and STM-inelastic electron tunnelling spectroscopy to answer questions about the active site of water gas shift catalysis and the mechanism by which the substrate reversibly exchanges oxygen. The second challenge will probe the structures of interfaces between water and ZnO and TiO2, using surface X-ray diffraction and STM. This will include the adsorption of dye mimics from solution. In the third challenge, femtosecond time resolved photoemission using pump probe will be used to unravel the details of energy dissipation following a UV pulse absorption by ZnO and TiO2 substrates and their interaction with water. This is directly related to processes associated with photocatalysis. We expect that this ERC project will revolutionise our understanding of energy functional surfaces based on metal oxides and ultimately lead to key breakthroughs in the design of advanced devices.

Call for proposal

ERC-2010-AdG_20100224
See other projects for this call

Host institution

UNIVERSITY COLLEGE LONDON
EU contribution
€ 2 364 681,00
Address
GOWER STREET
WC1E 6BT LONDON

See on map

Activity type
Higher or Secondary Education Establishments
Administrative Contact
Giles Machell (Mr.)
Principal investigator
Geoffrey Thornton (Prof.)
Links
Total cost
No data

Beneficiaries (1)