Objective Many important interactions near the surfaces of energy functional metal oxide surfaces are yet to be established at the atomic level. How bonds are formed and broken in photocatalysis, the role of the metal and oxide in a supported metal catalyst, the mechanism of energy flow from atom to atom after photoexcitation in a photovoltaic device are just some of the open questions. The underlying motivation to generate answers is clear: it provides an opportunity to improve technology associated with light harvesting and energy-related catalysis. But the fundamental science required is extremely challenging and is only just starting to yield some detailed answers. In this highly ambitious project we will tackle three major issues associated with the surface chemistry of energy functional metal oxides-- three grand challenges. In doing so, we will make use of a unique range of experimental techniques. One will focus on solid-gas interactions in studies of Au on CeO2, employing scanning tunneling microscopy (STM), scanning tunnelling spectroscopy and STM-inelastic electron tunnelling spectroscopy to answer questions about the active site of water gas shift catalysis and the mechanism by which the substrate reversibly exchanges oxygen. The second challenge will probe the structures of interfaces between water and ZnO and TiO2, using surface X-ray diffraction and STM. This will include the adsorption of dye mimics from solution. In the third challenge, femtosecond time resolved photoemission using pump probe will be used to unravel the details of energy dissipation following a UV pulse absorption by ZnO and TiO2 substrates and their interaction with water. This is directly related to processes associated with photocatalysis. We expect that this ERC project will revolutionise our understanding of energy functional surfaces based on metal oxides and ultimately lead to key breakthroughs in the design of advanced devices. Fields of science natural scienceschemical sciencescatalysisphotocatalysisnatural scienceschemical sciencesinorganic chemistryinorganic compoundsnatural sciencesphysical sciencesopticsmicroscopyscanning tunneling microscopynatural sciencesphysical sciencesopticsspectroscopy Programme(s) FP7-IDEAS-ERC - Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) Topic(s) ERC-AG-PE4 - ERC Advanced Grant - Physical and Analytical Chemical sciences Call for proposal ERC-2010-AdG_20100224 See other projects for this call Funding Scheme ERC-AG - ERC Advanced Grant Coordinator UCL Elizabeth Garrett Anderson Institute for Women’s Health Address Gower street WC1E 6BT London United Kingdom See on map Region London Inner London — West Camden and City of London Activity type Higher or Secondary Education Establishments Administrative Contact Giles Machell (Mr.) Principal investigator Geoffrey Thornton (Prof.) Links Contact the organisation Opens in new window Website Opens in new window EU contribution No data Beneficiaries (1) Sort alphabetically Sort by EU Contribution Expand all Collapse all UCL Elizabeth Garrett Anderson Institute for Women’s Health United Kingdom EU contribution € 2 364 681,00 Address Gower street WC1E 6BT London See on map Region London Inner London — West Camden and City of London Activity type Higher or Secondary Education Establishments Administrative Contact Giles Machell (Mr.) Principal investigator Geoffrey Thornton (Prof.) Links Contact the organisation Opens in new window Website Opens in new window Other funding No data