Objective
New implant-materials are increasingly being sought to augment the developments in orthopedics and dentistry. Implants, made of composite materials that rely on osteoconduction for fixation, are increasingly replacing traditional cemented prosthesis. It is well known that metals and alloys exhibit good mechanical properties. However, their use is confronted with biocompatibility issues. Hydroxyapatite (HA, Ca10(PO4)6(OH)2), a compound that shows a very similar crystal structure as that of the bone mineral, exhibits the highest degree of biocompatibility, but poor mechanical properties make them unsuitable for load-bearing applications. This project incorporates two vital technologies of the new millennium: biotechnology and nanotechnology to synthesize novel titanium based nanocomposites.
A new powder processing technique, ultrasonic powder consolidation (USC), is proposed, which is a clean and energy efficient process without the inherent disadvantages of traditional powder metallurgy techniques. In this work, titanium/titanium alloy powders will be mixed with nano-HA powders and consolidated using ultrasonic waves into cylindrical composite pallets. The resulting compacts will be sintered using microwaves at a frequency of 2.45 GHz.The as-synthesized materials will be characterized in terms of phase content, microstructure, mechanical reliability, thermal stability and biocompatibility. The process parameters will be optimized.
This work will be of great scientific and commercial potential and it is expected that the novel implants developed from these materials will offer a better quality of life to patients worldwide. This will attract new collaborators to Europe and will facilitate the development of novel ideas for the future that will benefit the European society and the scientific community in general. From an educational perspective, the project will be a boost to the pedagogical activities in the area of biotechnology in the University of Cyprus.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- engineering and technologymaterials engineeringcrystals
- engineering and technologymaterials engineeringcomposites
- natural scienceschemical sciencesinorganic chemistrytransition metals
- engineering and technologynanotechnology
- engineering and technologymaterials engineeringnanocomposites
You need to log in or register to use this function
Call for proposal
FP7-PEOPLE-2010-RG
See other projects for this call
Funding Scheme
MC-ERG - European Re-integration Grants (ERG)Coordinator
1678 Nicosia
Cyprus