Objective
"Accurate calculation of the hydration free energies of organic molecules is a long-standing challenge in computational chemistry and is important in many aspects of research in the pharmaceutical and agrochemical industries. For example, many of the pharmacokinetic properties of potential drug molecules are defined by their in vivo solvation and acid-base behavior, which can be estimated from their hydration free energies.
Commonly used methods to calculate hydration free energy (e.g. continuum solvent models and explicit solvent simulations) are either too inaccurate or too computationally expensive for routine use in the pharmaceutical industry. In a recent blind test for the calculation of hydration free energies of druglike molecules using existing methods, the best predictions were in the range RMSE = 2.5 – 3.5 kcal/mol, which equates to a ~2 log unit error in the related pharmacokinetic property (estimated from G(solv) = −RT ln K). [Guthrie, J.P. J. Phys. Chem. B, 2009, 113, 4501]
Integral equation theory (IET) is an alternative framework for the calculation of hydration free energies. IET retains information about the solvent structure (in the form of density correlation functions), but estimates the solute chemical potential without the need for long explicit solvent simulations. In a recent proof-of-concept study, Palmer (the “experienced researcher”) and Fedorov (the “scientist in charge”) demonstrated that using IET it is possible to calculate hydration free energies of druglike molecules more accurately than with other existing methods (RMSE for a test set of 19 molecules was less than 1.2 kcal/mol). [Palmer, D.S. et al. J. Chem. Phys., 2010, 133, 044104]
The purpose of this proposal is to build upon earlier work and to develop real-world tools for predicting the pharmacokinetic properties of druglike molecules using IET."
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2010-IEF
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
G1 1XQ Glasgow
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.