Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Nano-diamond building blocks for micro-device applications

Objective

The aim of the proposed project is to initiate a new research line on the development of nano-diamond building blocks for micro-devices. Diamond is a superlative engineering material combining exceptional thermal, mechanical, and chemical properties. Nano-grained diamond is of large scientific and technological interest since it could lead to several breakthroughs in micro-engineering, like e.g. for the synthesis of micro-electromechanical systems. Such nano-diamond deposits could replace silicon and other well-established materials that are unsuitable under extreme conditions, and could help to tackle the reliability issues due to friction and wear in numerous micro-device applications. This project will address several key aspects related to the growth, structure, and function of nano-diamond deposits that still impede their breakthrough for micro-scale applications.

The key objective is the controlled synthesis of complex-shaped, 3-D micro-structured nano-diamond deposits with large aspect ratio displaying very low surface roughness, high film conformality, and well-controlled material properties. That will be achieved by acquiring a deeper understanding and control of the early stage formation of nano-diamond thin films on micro-patterned substrates.

The Fellow will combine advanced diamond growth techniques with new developments in atomic layer deposition and miniature device fabrication. He will develop a two-pronged approach using experimental procedures and computer simulations to understand and tailor the nucleation and growth dynamics of nano-diamond thin films. Surface micromachining technology will then be applied for micro-patterning the nano-diamond. For the first time, recently developed micro-device tribometers will be used to assess the tribomechanical performance of nano-diamond at micro-contacts. The research will be carried out in four subprojects axed around two specific applications: (1) micro-fluidic delivery systems and (2) micro-machines.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2010-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

KATHOLIEKE UNIVERSITEIT LEUVEN
EU contribution
€ 219 500,00
Address
OUDE MARKT 13
3000 LEUVEN
Belgium

See on map

Region
Vlaams Gewest Prov. Vlaams-Brabant Arr. Leuven
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0