Skip to main content

Exploiting Chemical Self-Organisation in Materials Science

Objective

"From molecules and cells to whole organisms, self-organising behaviour emerges from the interaction of components. The most beautiful examples of self-organisation occur in biological systems, where the combination of non-equilibrium chemistry and physical processes in confined environments give rise to complex but ordered structures. A current challenge for physical scientists is to mimic biology for the creation of complex patterned materials that might act as functional catalytic surfaces, novel materials or devices for the healthcare industries such as synthetic tissue.

The purpose of this project is to develop new technologies for the generation of patterned materials. For the creation of spatial order, a mechanism proposed by Alan Turing in 1952 as a chemical basis for morphogenesis will be exploited. In this seminal work, he demonstrated theoretically how reaction and diffusion combine to create a chemical pre-pattern for the growth of form in biological systems. Now the robust formation of microscale spots, stripes and labyrinth-type patterns has been reported in flow reactors containing gels/membranes. We design novel flow reactors to generate the first Turing patterns on curved surfaces using porous tubes or particles as support. The patterns will trigger polymerisation processes by using, for example, acid concentration patterns coupled with acid catalysed polymerisation to obtain micro-patterned tubes or spheres. Part of the research will also involve developing bio-compatible routes to micropatterned materials by use of enzyme-catalysed reactions. The project is highly interdisciplinary, combining the physical sciences and engineering. It will also provide insight to the role of curvature on biological pattern formation driven by reaction-diffusion mechanisms; an important area of exclusively theoretical research."

Call for proposal

FP7-PEOPLE-2010-IIF
See other projects for this call

Coordinator

UNIVERSITY OF LEEDS
Address
Woodhouse Lane
LS2 9JT Leeds
United Kingdom
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 201 049,60
Administrative Contact
Martin Hamilton (Mr.)