Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-06-18

Interactions of Breast Cancer Cells with Macrophages in Controlled 3D in vitro Microenvironments

Objective

The leading cause of death for cancer patients is metastasis. During metastasis, cancer cells interact with various molecules and cells. It has been shown that a group of macrophages facilitates metastasis. Our goal is to determine the mechanism of interaction between epidermal growth (EGF) produced by macrophages and epidermal growth factor receptor (EGFR) expressed by breast cancer cells.
Soluble EGF or macrophage conditioned medium does not stimulate breast cancer cell invasion into collagen matrix and 6 kDa EGF is not detected in conditioned medium or cell lysates. Various growth factors are known to bind the extracellular matrix (ECM) and cells can move by haptotaxis (chemo-attractants are substrate-bound). What is more, breast cancer cells do not invade into collagen matrix when macrophages are not present. Based on the above, we will test the following hypotheses:
1) Breast cancer cells show chemotaxis to freely diffusing EGF in ECM.
2) Breast cancer cells show haptotaxis to ECM bound EGF.
3) Breast cancer cells are stimulated by EGF on the cell surface of macrophages.
We will use UV lithography to prepare 3D microenvironments for cell culture and use confocal fluorescence microscopy to assay cell behavior and examine the ECM of macrophages. If EGF is soluble in 3D matrix, breast cancer cells will show increased motility with increased proximity to macrophages. If EGF binds to ECM, then ECM produced by macrophages will be able to stimulate breast cancer cell motility via stimulation of EGFR. If EGF stays on the surface of macrophages, breast cancer cells will not invade the matrix without direct contact with macrophages.
This interdisciplinary project will establish an experimental system to study interactions between different cell types and will help develop novel diagnostic and therapeutic approaches and devices. The researcher will bring the state-of-the-art knowledge and know-how she has acquired in various international institutions, to Europe.

Call for proposal

FP7-PEOPLE-2010-RG
See other projects for this call

Coordinator

IZMIR INSTITUTE OF TECHNOLOGY
EU contribution
€ 100 000,00
Address
GULBAHCE URLA
35430 İzmir
Türkiye

See on map

Region
Ege İzmir İzmir
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Sami Doganlar (Prof.)
Links
Total cost
No data