Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Protein-based ATRP catalysts: From Nanoreactors to ATRPases

Objective

Atom Transfer Radical Polymerization (ATRP) is the most successful and widely applied controlled radical polymerization process and has emerged as one of the most powerful synthetic techniques in polymer science. Chain termination reactions are suppressed and the growth of the chains proceeds in a controlled way. It allows precise control of the polymer’s molecular weight, achieving a narrow molecular weight distribution and synthesis of polymers with complex molecular architectures, such as block copolymers. However, the major drawback of ATRP is the residual toxic copper ions found in the final polymer products. I propose to investigate protein-based catalysts for the mediation of ATRP. The methodology developed during my Marie Curie fellowship, the conjugation of appropriate ligands to defined sites on protein surfaces, will be used. ATRP catalysts will be obtained in which the active complex is encapsulated in a cage like protein nanoreactor, or where the catalyst is exposed on the surface of fluorescent proteins. The nanoreactors will be explored to synthesize individual amphiphilic block copolymer chains in a hydrophilic nanocompartment. This system allows studying the folding of individual amphiphilic block copolymer chains. On the other hand, fluorescent proteins will be explored as efficient means to remove copper from the polymerization solution, and to monitor such removal by observing the location of fluorescence. With this system, homo and block copolymers will be synthesized that are acceptable for application in biomedical and food-grade applications because of their low copper ion content. Last but not least, naturally occurring metalloproteins, such as hemoglobin, peroxidase and cytochromes, will be explored as ATRP catalysts in aqueous and in nonaqueous solutions. As these proteins are non-toxic and available in large quantities, they could become the ATRP catalysts of the future.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2010-RG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-ERG - European Re-integration Grants (ERG)

Coordinator

UNIVERSITAT BASEL
EU contribution
€ 45 000,00
Address
PETERSPLATZ 1
4051 Basel
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Nordwestschweiz Basel-Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0