Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

From Nano Test Tube to Nano Reactor: Visualisation, Manipulation and Synthesis of Molecules at Nanoscale

Objective

High aspect ratio (quasi-1D) nanostructures have potential to revolutionise the way we use, make and study molecules. This ambitious project is designed to enable characterisation and manipulation of molecules at a single-molecule level, visualisation of mechanisms of chemical reactions in real space and time, and synthesis of molecules within nano-sized containers. Understanding interactions of molecules with nanostructures of different types (nanofibres, nanotubes) and different chemical composition (carbon, bron nitride, titanium dioxide) forms a fundamental core of this project, as the 1D nanomaterials will serve as structural and functional bridges between the molecular world and the macro world. This project opens up new broad horizon for molecular disciplines, such as organic chemistry, molecular physics and the science of nanomaterials. Molecules possessing optical (polyaromatic hydrocarbons, complexes of transition metals and lanthanides), magnetic (single-molecule magnets, free radicals) or redox (metallocenes, molecular wires, tetrathiafulvalene) properties wired to 1D nanostructures will be delivered for next generation of electronic devices, harnessing functional properties of individual molecules for a variety of applications ranging from ultrasensors to quantum information processors. This project will help to establish a precise control of geometries and orientations of extended molecular arrays urgently needed for nano-device applications. Understanding of how molecules interact with 1D nanostructures and how they react with each other when confined within nano-reactors will give a new powerful set of tools to control the direction, selectivity and kinetics of chemical reactions. Methodology of molecular confinement at the nanoscale developed in this project will offer new opportunities for preparative synthetic chemistry of the XXI century leading to high-value isomerically and enantiomerically pure products that cannot be synthesised otherwise.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-StG_20101014
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

THE UNIVERSITY OF NOTTINGHAM
EU contribution
€ 1 446 107,60
Address
University Park
NG7 2RD Nottingham
United Kingdom

See on map

Region
East Midlands (England) Derbyshire and Nottinghamshire Nottingham
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0