Objective Terahertz frequencies match the vibrations between large functional groups in molecular networks from macromolecules, nano-droplets to proteins. If we are able to measure these oscillations we can decipher the structure and the long-range interactions in large molecular systems. This yields a precise fingerprint of the molecule that is highly useful for sensitive trace analysis. However, despite of a lot of research in the field, high precision spectroscopy in the former terahertz gap for isolated large molecular networks has not been developed yet.In this project I will develop the necessary tools to measure terahertz transition frequencies in large, mass-selected molecular systems with high resolution. For this purpose a cryogenic radiofrequency ion trap will be coupled to a terahertz resonator cavity. This will allow excitation of a dilute sample of molecular ions in well-defined internal quantum states with single-frequency terahertz radiation. My vision is to achieve high spectral resolution and single-ion sensitivity for almost arbitrarily large molecular systems in the terahertz regime which will initiate a new field for molecular spectroscopy.To explore the potential of the newly-developed methods, I propose to study molecular networks of fundamental importance in chemistry, biology and astronomy. Vibration-tunneling dynamics will be studied in water cluster ions. Torsional motion of biological chromophores and its role in the quenching of the fluorescent state will be investigated. And the spectral signatures of molecules that are promising candidates for detection in the interstellar medium will be determined. Fields of science engineering and technologyelectrical engineering, electronic engineering, information engineeringinformation engineeringtelecommunicationsradio technologyradio frequencynatural sciencesbiological sciencesbiochemistrybiomoleculesproteinsnatural sciencesphysical sciencesastronomyplanetary sciencescelestial mechanicsnatural sciencesphysical sciencesopticsspectroscopy Programme(s) FP7-IDEAS-ERC - Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) Topic(s) ERC-SG-PE2 - ERC Starting Grant - Fundamental constituents of matter Call for proposal ERC-2011-StG_20101014 See other projects for this call Funding Scheme ERC-SG - ERC Starting Grant Coordinator UNIVERSITAET INNSBRUCK Address Innrain 52 6020 Innsbruck Austria See on map Region Westösterreich Tirol Innsbruck Activity type Higher or Secondary Education Establishments Administrative Contact Kurt Habitzel (Dr.) Principal investigator Roland Wester (Prof.) Links Contact the organisation Opens in new window Website Opens in new window EU contribution No data Beneficiaries (1) Sort alphabetically Sort by EU Contribution Expand all Collapse all UNIVERSITAET INNSBRUCK Austria EU contribution € 1 471 200,00 Address Innrain 52 6020 Innsbruck See on map Region Westösterreich Tirol Innsbruck Activity type Higher or Secondary Education Establishments Administrative Contact Kurt Habitzel (Dr.) Principal investigator Roland Wester (Prof.) Links Contact the organisation Opens in new window Website Opens in new window Other funding No data