Objective The objective of the project Environmental Effects and Risk Evaluation of Engineered Nanoparticles (EnvNano) is to elucidate the particle specific properties that govern the ecotoxicological effects of engineered nanoparticles and in this way shift the paradigm for environmental risk assessment of nanomaterials.While current activities in the emerging field of nano-ecotoxicology and environmental risk assessment of nanomaterials are based on the assumption that the methodologies developed for chemicals can be adapted to be applicable for nanomaterials, EnvNano has a completely different starting point: The behaviour of nanoparticles in suspension is fundamentally different from that of chemicals in on solution.Therefore, all modifications of existing techniques that do not take this fact into account are bound to have a limited sphere of application or in the worst case to be invalid. By replacing the assumption of dissolved chemicals with a particle behaviour assumption, the traditional risk assessment paradigm will be so seriously impaired that a shift of paradigm will be needed.EnvNano is based on the following hypotheses: 1. The ecotoxicity and bioaccumulation of engineered nanoparticles will be a function of specific physical and chemical characteristics of the nanoparticles; 2. The environmental hazards of engineered nanoparticles cannot be derived from hazard identifications of the material in other forms; 3. Existing regulatory risk assessment procedures for chemicals will not be appropriate to assess the behaviour and potential harmful effects of engineered nanoparticles on the environment.These research hypotheses will be addressed in the four interacting research topics of EnvNano: Particle Characterization, Ecotoxicty, Bioaccumulation, and Framework for Risk Evaluation of Nanoparticles aimed to form the foundation for a movement from coefficient-based to kinetic-based environmental nanotoxicology and risk assessment. Fields of science engineering and technologynanotechnologynano-materials Programme(s) FP7-IDEAS-ERC - Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) Topic(s) ERC-SG-LS9 - ERC Starting Grant - Applied life sciences and biotechnology Call for proposal ERC-2011-StG_20101109 See other projects for this call Funding Scheme ERC-SG - ERC Starting Grant Coordinator DANMARKS TEKNISKE UNIVERSITET Address Anker engelunds vej 101 2800 Kongens lyngby Denmark See on map Region Danmark Hovedstaden Københavns omegn Activity type Higher or Secondary Education Establishments Administrative Contact Jørgen Thorsø Pedersen (Mr.) Principal investigator Anders Baun (Dr.) Links Contact the organisation Opens in new window Website Opens in new window EU contribution No data Beneficiaries (1) Sort alphabetically Sort by EU Contribution Expand all Collapse all DANMARKS TEKNISKE UNIVERSITET Denmark EU contribution € 1 196 260,00 Address Anker engelunds vej 101 2800 Kongens lyngby See on map Region Danmark Hovedstaden Københavns omegn Activity type Higher or Secondary Education Establishments Administrative Contact Jørgen Thorsø Pedersen (Mr.) Principal investigator Anders Baun (Dr.) Links Contact the organisation Opens in new window Website Opens in new window Other funding No data