Project description
Core and disruptive photonic technologies
The objective of FIREFLY is the introduction of novel polymer waveguide and photonic crystal structures based on highly structured 3D nano-hybrids into industrial applications by using a new cost effective production process for larger scale manufacturing. The target applications are optical waveguides and photonic structures for the manipulation of light in, for example, optical interconnects. The optical interconnects technology will initially be applied for data communication in high performance supercomputers, and eventually these optics will also find their way into high-end server systems, mid-range servers and in consumer-like applications such as high-end multimedia devices.Waveguides and photonic crystals based on polymers have been proven in a laboratory environment to be interesting technologies for light management. In most cases these structures are manufactured on small scale.
\\n\\nWe propose the use of a relatively new technology to manufacture these structures on a larger scale.The nano-hybrids will be manufactured using a combined approach of nano-imprint process in a polymer resins and self assembly of material in the polymer nano-structures. The nano-structures will be filled with new modified polymer compositions having a high refractive index and optical clarity at relevant wavelengths, necessary for waveguides, and with inorganic nanoparticles to prepare photonic crystals, for the manipulation of light for guiding the light in waveguides through sharp horizontal and vertical bends. Some material developments are needed: new silicone polymers that will be modified for improved optical properties such as low optical loss and tuneable refractive index, and new inorganic particles that will combine a high refractive index with a very high level of monodispersity.The manufacturing process will be suitable for up-scaling to an industrial process. This new bottom-up approach will enable the development of hybrid materials with new optical properties.
The objective of FIREFLY is the introduction of novel polymer waveguide and photonic crystal structures based on highly structured 3D nano-hybrids into industrial applications by using a new cost effective production process for larger scale manufacturing. The target applications are optical waveguides and photonic structures for the manipulation of light in, for example, optical interconnects. The optical interconnects technology will initially be applied for data communication in high performance supercomputers, and eventually these optics will also find their way into high-end server systems, mid-range servers and in consumer-like applications such as high-end multimedia devices.Waveguides and photonic crystals based on polymers have been proven in a laboratory environment to be interesting technologies for light management. In most cases these structures are manufactured on small scale. We propose the use of a relatively new technology to manufacture these structures on a larger scale.The nano-hybrids will be manufactured using a combined approach of nano-imprint process in a polymer resins and self assembly of material in the polymer nano-structures. The nano-structures will be filled with new modified polymer compositions having a high refractive index and optical clarity at relevant wavelengths, necessary for waveguides, and with inorganic nanoparticles to prepare photonic crystals, for the manipulation of light for guiding the light in waveguides through sharp horizontal and vertical bends. Some material developments are needed: new silicone polymers that will be modified for improved optical properties such as low optical loss and tuneable refractive index, and new inorganic particles that will combine a high refractive index with a very high level of monodispersity.The manufacturing process will be suitable for up-scaling to an industrial process. This new bottom-up approach will enable the development of hybrid materials with new optical properties.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologymechanical engineeringmanufacturing engineering
- engineering and technologymaterials engineeringcrystals
- natural scienceschemical sciencespolymer sciences
- engineering and technologynanotechnologynano-materials
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwaresupercomputers
You need to log in or register to use this function
Call for proposal
FP7-ICT-2011-7
See other projects for this call
Funding Scheme
CP - Collaborative project (generic)Coordinator
2595 DA Den Haag
Netherlands