European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-05-28

Physics of the Solar Chromosphere

Objectif

CHROMPHYS aims at a breakthrough in our understanding of the solar chromosphere by combining the development of sophisticated radiation-magnetohydrodynamic simulations with observations from the upcoming NASA SMEX mission Interface Region Imaging Spectrograph (IRIS).

The enigmatic chromosphere is the transition between the solar surface and the eruptive outer solar atmosphere. The chromosphere harbours and constrains the mass and energy loading processes that define the heating of the corona, the acceleration and the composition of the solar wind, and the energetics and triggering of solar outbursts (filament eruptions, flares, coronal mass ejections) that govern near-Earth space weather and affect mankind's technological environment.

CHROMPHYS targets the following fundamental physics questions about the chromospheric role in the mass and energy loading of the corona:

- Which types of non-thermal energy dominate in the chromosphere and beyond?

- How does the chromosphere regulate mass and energy supply to the corona and the solar wind?

- How do magnetic flux and matter rise through the chromosphere?

- How does the chromosphere affect the free magnetic energy loading that leads to solar eruptions?

CHROMPHYS proposes to answer these by producing a new, physics based vista of the chromosphere through a three-fold effort:

- develop the techniques of high-resolution numerical MHD physics to the level needed to realistically predict and analyse small-scale chromospheric structure and dynamics,

- optimise and calibrate diverse observational diagnostics by synthesizing these in detail from the simulations, and

- obtain and analyse data from IRIS using these diagnostics complemented by data from other space missions and the best solar telescopes on the ground.

Appel à propositions

ERC-2011-ADG_20110209
Voir d’autres projets de cet appel

Régime de financement

ERC-AG - ERC Advanced Grant

Institution d’accueil

UNIVERSITETET I OSLO
Contribution de l’UE
€ 2 487 600,00
Adresse
PROBLEMVEIEN 5-7
0313 Oslo
Norvège

Voir sur la carte

Région
Norge Oslo og Viken Oslo
Type d’activité
Higher or Secondary Education Establishments
Contact administratif
Ingse Noremsaune (Dr.)
Chercheur principal
Mats Per-Olof Carlsson (Prof.)
Liens
Coût total
Aucune donnée

Bénéficiaires (1)