Objective
Photoelectrochemical H2 production from water is a field of high present interest. This project is to design nanophotonics for efficient solar-to-H2 energy conversion. A method will be developed for fabricating nanophotonic structure (such as inverse opal photonic crystals, nanoarray photonic structure) of narrow band gap ternary metal oxide as photoanodes, for example, BiVO4 (2.4 eV), InVO4 (2.0 eV), BiFeO3 (2.2 eV), etc. Highly efficient solar-to-H2 energy conversion is expected to be achieved due to the superiorities of the structure and unique optical properties of nanophotonic structures, including stronger interaction between light and the photoelectrode induced by the stop-band edge effect, greatly improved light harvesting due to the multiple scattering effect, efficient photogenerated charge carriers separation due to the distance for photogenerated holes to reach the interface of semiconductor and the electrolyte can be significantly reduced. The proposed project will try to address how nanophotonic structures with their unique physical properties can enable efficient harvesting of light.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences inorganic chemistry inorganic compounds
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- engineering and technology nanotechnology nanophotonics
- engineering and technology environmental engineering energy and fuels energy conversion
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2011-IEF
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
CB2 1TN CAMBRIDGE
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.