Objective
We here propose a new approach to the formation of Hierarchical Electroactive Hybrids exploiting Biological Motifs, which will provide new strategies and tools for control that will define future bottom-up 3D construction of materials in the field of functional nanomaterials for nanoelectronics. Functional electroactive oligo(aniline)s, combined with guanine hydrogen-bonding units, will be combined with single-stranded DNA block copolymers in rationally designed ways, so that information encoded in the biological materials will control spatial placement and orientation, interactions and level of functionality in three dimensions within the formed complex and hierarchical superstructures.
This groundbreaking approach will utilise combinations of DNA block copolymer (BCP) self-assembly, electroactivity and encoded self-assembly, and will open unexplored avenues in the priority areas of nanotechnology, nanoelectronics and advanced materials through its interdisciplinary and multidisciplinary approach. This proposed research will rely on modern synthetic protocols of organic chemistry, chemicophysical analyses of optoelectronic properties and structure-property interplay, self-assembly in the solid state, device fabrication and testing. It is expected that the outcomes of this proposed research will impact across these disciplines, and contribute knowledge to a high priority area for both society and the research community within the EU and beyond.
This fellowship and project will be an important step forward in the research career of Dr. Dasgupta, who has experience and a very strong track record in the synthesis and assembly of functional molecular architectures and supramolecular aggregation. Dr. Dasgupta will therefore be enabled, through this Marie Curie fellowship, to systematically investigate this highly relevant research area that has been left unexplored to date, and thus develop his independent scientific career fully.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
Topic(s)
Call for proposal
FP7-PEOPLE-2011-IEF
See other projects for this call
Funding Scheme
MC-IEF - Intra-European Fellowships (IEF)Coordinator
BS8 1QU Bristol
United Kingdom