Objective
RNA transport coupled to local translation presents an efficient means to regulate gene expression in time and space. Recent studies have indicated that this mode of post-transcriptional regulation is used in many different cell types and applied to hundreds to thousands of transcripts. mRNA transport is of particular importance in neurons, where it is involved in processes such as axon guidance and activity-induced synaptic plasticity. Loss of proteins involved in regulating RNA transport have been linked to hereditary mental retardation and dendritic targeting of certain mRNAs has been shown to be crucial for formation of long-term memories. However, which mRNAs are differentially localized in neurons and by what mechanism they are transported remains largely unknown.
Here we propose to investigate this problem using the model organism Drosophila melanogaster, which offers significant experimental advantages, such as little genetic redundancy, powerful tools for loss- and gain-of-function studies and the possibility of visualize living neurons in their natural environment at high resolution. Furthermore, previous work has established that the overall mechanism of RNA transport is conserved from fly to humans. Thus, findings in the fly system are likely to have direct implications for our understanding of the human brain.
We will adapt an established live cell imaging approach to identify mRNAs that are specifically enriched in neuronal processes. Identified transcripts will be characterized in further detail and used to search for RNA-binding proteins that specifically contact their localization elements. Candidate proteins will be tested for a role in mRNA transport using genetics coupled to high resolution imaging. Eventually, proteins regulating mRNA localization will be tested for a physiological role in the brain. Our work should reveal new insights into the cell biology of neurons and have broad implications for neuronal development, plasticity and disease.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences neurobiology
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences biological sciences cell biology
- natural sciences biological sciences genetics RNA
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2011-IEF
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
W1B 1AL LONDON
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.