Skip to main content

Tunable, highly spin-polarised materials for spintronics and non-volatile memories

Objective

The aim of the HIGHSPIN project is to incorporate tunable, highly spin-polarised (THSP) materials into spintronic devices and utilise them in new 2D and 3D nanomagnetic data storage architectures.

The field of spintronics, where both the spin and charge of the electron are used, is one of the most rapidly developing and exciting areas of nano-science. The discipline has already revolutionised the information technology industry and further technological applications, from data storage to microwave field generation, make it a hugely worthwhile investigation area. Crucial to all proposed schemes is the efficient creation and control of spin-polarised electric currents. THSP materials offer a means to tailor robust, completely polarised currents. As yet however their use has not been realised in spin transport measurements and spintronic devices.

Spin currents offer a fast, low power, electrical means to control magnetic switching which may be scaled along with future device minimisation. They are particularly well suited for emerging classes of 2D and 3D magnetic data-storage, which offer unparalleled densities in fast, low power and non-volatile memories. The project will aim to provide the first demonstration of THSP materials in spintronic devices and develop a working means of pure spin-current mediated data writing in these storage schemes. Fundamentally, the results will greatly further understanding of the role of spin polarisation in spin transport and spin torques on magnetic switching.

The initial outgoing phase will draw from the expertise in advanced materials synthesis and spin transport of the Materials Science department at the University of Minnesota (USA). This knowledge will be well complemented by the return host organisation’s (Thin Film Magnetism, University of Cambridge, UK) leading role in 2-D and 3-D nanomagnetic storage architectures and the applicant’s experience in high-resolution lithography techniques and nanoscale magnetism.

Call for proposal

FP7-PEOPLE-2011-IOF
See other projects for this call

Coordinator

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Address
Trinity Lane The Old Schools
CB2 1TN Cambridge
United Kingdom
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 271 943,70
Administrative Contact
Renata Schaeffer (Ms.)