Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

The role of dissolved organic nitrogen (DON) on the development and extend of eutrophication-driven hypoxia and responses to global warming

Objective

Coastal hypoxia is a mounting problem worldwide that has been recognised as a major threat to marine coastal biota. The decline in dissolved oxygen can affect ecosystems structure and functioning. Managerial efforts to prevent hypoxia and recover ecosystems that have already been affected by hypoxia are largely based on nutrient reduction plans. Most nutrient reduction plans are focused on the reduction of the inorganic fraction of the nutrient loadings, particularly in reductions of nitrate and phosphate inputs. However, the concentration of dissolved organic nitrogen (DON) frequently exceeds that of dissolved inorganic nitrogen (DIN) in both marine and freshwaters. Recent studies indicate that many components of the DON pool can play an active role in supplying, directly or indirectly, nitrogen nutrition to phytoplankton and bacteria and may affect community metabolic rates and species composition of the ambient microbial assemblage. Elucidate the role of DON in the development and extend of eutrophication-driven hypoxia is essential to set successful management strategies in order to reduce hypoxia development and recover ecosystems experiencing hypoxia at present, to better protect marine biodiversity. The main goal of this project is to evaluate the role of DON in planktonic and bacterial community metabolic rates, and on oxygen dynamics in the Baltic Sea, the largest coastal area suffering from eutrophication-driven hypoxia. The project also aims to evaluate the effects of global warming in the interaction between DON inputs, metabolic rates and oxygen dynamics. Predictions on effects of global warming and eutrophication in dissolved oxygen dynamics in near and far future are needed to elucidate the consequences of the lack of oxygen on biodiversity and ecosystems structure and functioning. The results of this project could help better protect marine ecosystems, preserve biodiversity and set successful management targets for coastal waters.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2011-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

MAX IV Laboratory, Lund University
EU contribution
€ 181 418,40
Address
Paradisgatan 5c
22100 LUND
Sweden

See on map

Region
Södra Sverige Sydsverige Skåne län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0