Skip to main content

Continuous-Variable Quantum Detector And Process Tomography

Objective

"At the heart of all quantum technologies and fundamental tests of quantum theory lies the concept of a quantum experiment, which consists of three stages: state preparation, state evolution, and measurement. To ensure that a quantum application, such as quantum computer, is actually performing the desired task with satisfactory fidelity requires the capability to monitor each step. Quantum state and process tomography respectively prescribe procedures to completely characterize the first two stages. Tomography of quantum detectors was proposed just three years ago for discrete-variable photon-counting detection, and has yet to be developed for continuous-variable (CV) detectors such as a balanced homodyne detector (BHD). The study of CV quadrature states, processes and detection is motivated by the significantly increased complexity of such systems and the expanded capabilities that accompany this intricacy. A key advance that we propose is the complete characterization of a CV-BHD. This will be accomplished by probing the detector with known coherent states. The measurement outcomes will be analyzed using the newly developed methods of compressive sensing and operational tomography. Careful determination of BHD operation will subsequently enable us to achieve a greatly improved rendering of more involved CV quantum processes such as Fock-state filtration. By measuring the action of a process on a set of calibrated coherent states we will perform CV-quantum process tomography (QPT) of single mode processes, which are of major relevance to non-classical quantum state preparation: single photon substraction and Fock-state filtration."

Call for proposal

FP7-PEOPLE-2011-IEF
See other projects for this call

Coordinator

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Address
Wellington Square University Offices
OX1 2JD Oxford
United Kingdom
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 209 033,40
Administrative Contact
Gill Wells (Ms.)